CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
99mTc-anionic linear globular dendrimer-G2-phenylalanine conjugate: Novel brain tumor SPECT imaging
Authors
M.S. Ardestani
A. Darbandi-Azar
+4 more
R. Faridi-Majidi
A.B. Rajabi
R. Rasouli
F. Zaaeri
Publication date
1 January 2021
Publisher
Abstract
The purpose of this study was the investigation of the targeting potential of99mTc-Labeled dendrimer-phenylalanine conjugate for brain tumor SPECT imaging. L-Type amino acid transporters (LAT1) are highly expressed in the blood-brain barrier as well as in brain cancer cells; thus, targeting LAT1 using phenylalanine could improve the sensitivity and specificity of radiosynthesis nanocarrier. In this study, the dendrimer G2�phenylalanine conjugate was synthesized and characterized by Fourier transform infrared spectroscopy, atomic force microscopy, particle size, and zeta potential. MTT assay was done for cell viability measurement in different concentrations of nanoparticles (0.125, 0.25, 0.5 mg/ml) on C6 glioma cell lines; the uptake study was evaluated using fluorescence-activated cell sorter (FACS) instrument; finally, SPECT scintigraphy in glioma tumor-bearing Wistar rats was done. The dendrimer-phenylalanine conjugate particle size was found in the range of 74.14±2.2 to 109±3.1 nm, with a slightly negative surface charge. Also, phenylalanine present on the dendrimer's surface� phenylalanine conjugate enhanced the dendrimer's cellular uptake�phenylalanine conjugate on the C6 glioma cell line. Results of SPECT imaging and fluorescence studies revealed that dendrimer� phenylalanine conjugate accumulated into the brain tumor cells, and it can be suggested as a promising brain-targeting probe with no toxicity in brain tumor imaging. © 2020 by the authors
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eprints Iran University of Medical Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.iums.ac.ir:33120
Last time updated on 15/04/2021