Colloidal Solutions with Silicon Nanocrystals: Structural and Optical Properties

Abstract

In this work, colloidal solutions with silicon nanoparticles using different solvents were synthetized. Structural, morphological and optical characterizations were realized, and these were studied. X-ray diffraction (XRD) was used to measure the diffractograms of the colloidal solutions, which are composed of silicon nanocrystals (Si-ncs), with an average size of approximately 3 nm, and a preferential crystalline orientation (311). Atomic force microscopy (AFM) images show that the morphology of silicon nanoparticles (Si-nps) is agglomerated in a big amount, which is corroborated by means of the roughness. On the other hand, high resolution transmission electronic microscopy (HRTEM) images show on average size of the Si-nc ranging from 1.5 to 10 nm, which depends on the solvent used. Also, different preferential crystalline orientations of the Si-nc such as (311), (220) and (111) were obtained. A correlation between the optical and structural properties was realized in colloidal solutions with silicon nanoparticles and different solvents

    Similar works