A fast method for monitoring the shifts in resonance frequency and dissipation of the QCM sensors of a Monolithic array in biosensing applications

Abstract

© 2021 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Improvement of data acquisition rate remains as an important challenge in applications with Quartz Crystal Microbalance (QCM) technology where high throughput is required. To address this challenge, we developed a fast method capable of measuring the response of a large number of sensors and/or overtones, with a high time resolution. Our method, which can be implemented in a low-cost readout electronic circuit, is based on the estimation of fr (frequency shift) and D (dissipation shift) from measurements of the sensor response obtained at a single driving frequency. By replacing slow fitting procedures with a direct calculation, the time resolution is only limited by the physical characteristics of the sensor (resonance frequency and quality factor), but not by the method itself. Capabilities of the method are demonstrated by monitoring multiple overtones with a single 5 MHz sensor and a Monolithic QCM array comprising 24 50MHz-sensors. Accuracy of the method is validated and compared with the state-of-the-art, as well as with a reference method based on impedance analysis.This work was supported in part by the Ministerio de Economía, Industria y Competitividad de España-Agencia Estatal de Investigación with Fondo Europeo de Desarrollo Regional (FEDER) Funds under Grant AGL2016-77702-R and in part by the European Commission Horizon 2020 Programme (Capturing non-amplified tumor circulating DNA with ultrasound hydrodynamics) under Agreement H2020-FETOPEN-2016-2017/737212-CATCH-UDNA. The work of María Calero was supported by the Spanish Ministry of Economy, Industry and Competitiveness, Madrid, Spain, under Grant BES-2017-080246.Fernández Díaz, R.; Calero-Alcarria, MDS.; García Narbón, JV.; Reiviakine, I.; Arnau Vives, A.; Jiménez Jiménez, Y. (2021). A fast method for monitoring the shifts in resonance frequency and dissipation of the QCM sensors of a Monolithic array in biosensing applications. IEEE Sensors Journal. 21(5):6643-6651. https://doi.org/10.1109/JSEN.2020.3042653S6643665121

    Similar works

    Full text

    thumbnail-image

    Available Versions