The Time-Budget Perspective of the Role of Time Dimension in Modular Network Dynamics during Functions of the Brain

Abstract

Information processing plays a key role in the daily activities of human and nonhuman primates. Information processing in the brain, underlying behavior, is constrained by the four-dimensional nature of external physical surroundings. In contrast to three geometric dimensions, there are no known peripheral sensory organs for the perception of time dimension. However, the representation of time dimension in modular neural networks is critical for the brain functions that require interval timing or the temporal coupling of action with perception. Recent experimental and theoretical studies are shedding light on how the representation of time dimension in neural circuits plays a key role in the diverse functions of the brain, which also includes motor interactions with environment as well as social interactions, such as verbal and nonverbal communication. Although different lines of evidence strongly suggest that rhythmic neural activities represent time dimension in the brain, how the information represented by rhythmic activities is processed to time behavioral responses by the brain remains unclear. Theoretical considerations suggest that the rhythmic activities represent a physical aspect of the time dimension rather than the source of simple additive temporal units for coding time intervals in neural circuits

    Similar works