Virtual Prototyping Platform for Designing Mechanical and Mechatronic Systems

Abstract

The chapter deals with the description of a virtual prototyping platform that facilitates the design process of the mechanical and mechatronic systems. The virtual prototyping stages are defined and then integrated in a block diagram, highlighting how the data are transferred between these stages in order to finally obtain a valid and optimal virtual model, close (as structure and functionality) to the real one. The whole process is guided by the basic principle for successful virtual prototyping: as complicated as necessary and as simple as possible. The real modeling case, the specific simplifying assumptions, and the validity (viability) fields of the simplifying assumptions are discussed with reference to the main components of a mechanical or mechatronic system (bodies, connections between bodies, actuating elements). The purpose is to manipulate the simplifying assumptions in a way that reduces the complexity of the virtual model, but without altering the accuracy of the results. The basic types of analysis/simulation are depicted by considering their particularities, highlighting their role in the process of designing mechanical/mechatronic systems, and then the optimization is conducted by the use of parametric design tools. Finally, a case study is developed following those mentioned above

    Similar works