Resonances in Left-Handed Waves Developed in Nonlinear Electrical Lattices

Abstract

We investigate resonant interactions in a specific electrical lattice that supports left-handed (LH) waves. The impact of LH waves on the three-wave mixing process, which is the most fundamental resonant interaction, is illustrated. In contrast to the ordinary right-handed (RH) waves, the phase of the LH wave moves to the different direction from its power. This exotic property together with the lattice’s dispersive features results in the resonant phenomena that are effectively utilized for practical electrical engineering, including the significant harmonic wave generation via head-on collisions, harmonic resonance, and short pulse generation driven by soliton decay. These resonances are quantified by the asymptotic expansion and characterized by numerical and/or experimental methods, together with several design criteria for their practical utilization. To cope with dissipation, a field-effect transistor (FET) is introduced in each cell. In particular, we characterize the stationary pulse resulting from the balance between dissipation and FET gain

    Similar works