Resilience Enhancement in Cyber-Physical Systems: A Multiagent-Based Framework

Abstract

The growing developments on networked devices, with different communication platforms and capabilities, made the cyber-physical systems an integrating part of most critical industrial infrastructures. Given their increasing integration with corporate networks, in which the industry 4.0 is the most recent driving force, new uncertainties, not only from the tangible physical world, but also from a cyber space perspective, are brought into play. In order to improve the overall resilience of a cyber-physical system, this work proposes a framework based on a distributed middleware that integrates a multiagent topology, where each agent is responsible for coordinating and executing specific tasks. In this framework, both physical and cyber vulnerabilities alike are considered, and the achievement of a correct state awareness and minimum levels of acceptable operation, in response to physical or malicious disturbances, are guaranteed. Experimental results collected with an IPv6-based simulator comprising several distributed computational devices and heterogeneous communication networks show the relevance and inherent benefits of this approach

    Similar works