Fractal Analysis of Cardiovascular Signals Empowering the Bioengineering Knowledge

Abstract

The cardiovascular system is composed of a complex network of vessels, where highly uniform hierarchical branching structures are regulated by the anatomy and local flow requirements. Arteries bifurcate many times before they become capillaries where the scaling factor of vessel length, diameter and angle between two children branches is established at each level of recurrence. This behaviour can be easily described using a fractal scaling principle. Moreover, it was observed that the basic pattern of blood distribution is also fractal, imposed both by the anatomy of the vascular tree and the local regulation of vascular tone. In this chapter, arterial physiology was analysed, where waveform complexity of arterial pressure time series was related to arterial stiffness changes, pulse pressure variations and the presence wave reflection. Fractal dimension was used as a nonlinear measure, giving place to a ‘holistic approach of fractal dimension variations throughout the arterial network’, both in health and disease

    Similar works