Degradation in PEM Fuel Cells and Mitigation Strategies Using System Design and Control

Abstract

The rapid miniaturization of electronics, sensors, and actuators has reduced the cost of field sensor networks and enabled more functionality in ever smaller packages. Networks of field sensors have emerging applications in environmental monitoring, in disaster monitoring, security, and agriculture. Batteries limit potential applications due to their low specific energy. A promising alternative is photovoltaics. Photovoltaics require large, bulky panels and are impacted by daily and seasonal variation in solar insolation that requires coupling to a backup power source. Polymer electrolyte membrane (PEM) fuel cells are a promising alternative, because they are clean, quiet, and operate at high efficiencies. However, challenges remain in achieving long lives due to catalyst degradation and hydrogen storage. In this chapter, we present a design framework for high-energy fuel cell power supplies applied to field sensor networks. The aim is to achieve long operational lives by controlling degradation and utilizing high-energy density fuels such as lithium hydride to produce hydrogen. Lithium hydride in combination with fuel-cell wastewater or ambient humidity can achieve fuel specific energy of 5000 Wh/kg. The results of the study show that the PEM hybrid system fueled using lithium hydride offers a three- to fivefold reduction in mass compared to state-of-the-art batteries

    Similar works