research

On a remarkable semigroup of homomorphisms with respect to free multiplicative convolution

Abstract

Let M denote the space of Borel probability measures on the real line. For every nonnegative t we consider the transformation Bt:Mβ†’M\mathbb B_t : M \to M defined for any given element in M by taking succesively the the (1+t) power with respect to free additive convolution and then the 1/(1+t) power with respect to Boolean convolution of the given element. We show that the family of maps {\mathbb B_t|t\geq 0} is a semigroup with respect to the operation of composition and that, quite surprisingly, every Bt\mathbb B_t is a homomorphism for the operation of free multiplicative convolution. We prove that for t=1 the transformation B1\mathbb B_1 coincides with the canonical bijection B:Mβ†’Minfβˆ’div\mathbb B : M \to M_{inf-div} discovered by Bercovici and Pata in their study of the relations between infinite divisibility in free and in Boolean probability. Here M_{inf-div} stands for the set of probability distributions in M which are infinitely divisible with respect to free additive convolution. As a consequence, we have that Bt(ΞΌ)\mathbb B_t(\mu) is infinitely divisible with respect to free additive convolution for any for every ΞΌ\mu in M and every t greater than or equal to one. On the other hand we put into evidence a relation between the transformations Bt\mathbb B_t and the free Brownian motion; indeed, Theorem 4 of the paper gives an interpretation of the transformations Bt\mathbb B_t as a way of re-casting the free Brownian motion, where the resulting process becomes multiplicative with respect to free multiplicative convolution, and always reaches infinite divisibility with respect to free additive convolution by the time t=1.Comment: 30 pages, minor changes; to appear in Indiana University Mathematics Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019