Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding

Abstract

Traditional materials for thermoelectric such as bismuth telluride have been studied and utilized commercially for the last half century, but recent advancements in materials selection are one of the principal function of the active thermoelectric device as it determines the reliability of the fabrication regarding technical and economic aspects. Recently, many researcher’s efforts have been made to utilize oxide nanomaterials for wearable thermoelectric power generator (WTPG) applications which may provide environmental stable, mechanical flexibility, and light weight with low cost of manufacturing. In precise, fabric containing oxide metals have shown great promise as P−/N-type materials with improved transport and UV shielding properties. On the other hand, we have focused on ZnO nanostructures as a high-efficiency WTPG material because they are non-toxic to skin, inexpensive and easy to obtain and possess attractive electronic properties, which means that they are available for clothing with low-cost fabrication. To our observation, we are chaptering about the thermoelectric properties of ZnO and their composite nanostructures coated cotton fabric via the solvothermal method for the first time

    Similar works