Let M be a closed Riemannian manifold of dimension n. Let f be an
eigenfunction of the Laplace-Beltrami operator corresponding to an eigenvalue
\lambda. We show that the volume of {f>0} inside any ball B whose center lies
on {f=0} is > C|B|/\lambda^n. We apply this result to prove that each nodal
domain contains a ball of radius > C/\lambda^n.Comment: 12 pages, 1 figure; minor corrections; to appear in Comm. PDE