Review of Current Neuroimaging Studies of the Effects of Prenatal Drug Exposure: Brain Structure and Function

Abstract

Neuroimaging tools have provided novel methods for understanding the impact of prenatal drug exposure on brain structure and function and its relation to development and behavior. Information gained from neuroimaging studies allows for the investigation of how prenatal drug exposure alters the typical developmental trajectory. The current prevalence and characteristics of prenatal drug exposure and its implications for vulnerable periods of brain development are reviewed. Structural and functional neuroimaging methods are introduced with examples of how study results from prenatal alcohol, cocaine, marijuana, and tobacco exposure further our understanding of the neurodevelopment impact of prenatal drug exposure. Prenatal drug neuroimaging studies have advanced our understanding of mechanisms and functional deficits associated with prenatal drug exposure. Studies have identified brain circuits associated with the default mode network, inhibitory control, and working memory that show differences in function as a result of prenatal drug exposure. The information gained from studies of prenatal drug exposure on brain structure and function can be used to make connections between animal models and human studies of prenatal drug exposure, identify biomarkers of documented effects of prenatal drug exposure on behavior, and inform prevention and intervention programs for young children

    Similar works