The Kaczmarz method for solving linear systems of equations is an iterative
algorithm that has found many applications ranging from computer tomography to
digital signal processing. Despite the popularity of this method, useful
theoretical estimates for its rate of convergence are still scarce. We
introduce a randomized version of the Kaczmarz method for consistent,
overdetermined linear systems and we prove that it converges with expected
exponential rate. Furthermore, this is the first solver whose rate does not
depend on the number of equations in the system. The solver does not even need
to know the whole system, but only a small random part of it. It thus
outperforms all previously known methods on general extremely overdetermined
systems. Even for moderately overdetermined systems, numerical simulations as
well as theoretical analysis reveal that our algorithm can converge faster than
the celebrated conjugate gradient algorithm. Furthermore, our theory and
numerical simulations confirm a prediction of Feichtinger et al. in the context
of reconstructing bandlimited functions from nonuniform sampling