Technologies Involved in the Manufacture of Smart Nonwoven Fabrics

Abstract

Many methods can be used to protect humans against hazardous chemicals in the environment such as personal protective equipment and protective clothing. However, what matters most is prevention and early detection of threats. Detecting the presence of hazardous chemicals such as organic liquids and the vapours they give off is possible using sensors. Effective chemosensory properties are revealed by conductive polymers and carbon particles, where the electrical resistance of chemicals changes. Still open to debate is finding the optimum means of applying chemical sensors that would provide high sensitivity, durability, reliability, and resistance but at the same time would not be expensive. The authors propose introducing chemical sensors in the form of nonwoven fabrics produced by the melt-blown method and by electrospinning. The analysis takes account of melt-blown nonwoven fabric ​​based on polylactide (PLA)-containing carbon nanotubes, nonwoven fabric made by electrospinning based on polyethylene oxide–containing carbon nanotubes and carbon nonwoven fabric from polyacrylonitrile submicron precursor fibres formed by electrospinning. Assessment of the effectiveness of the sensors to liquid vapours including methanol, acetone, benzene and toluene (concentration 200 ppm) has been carried out. The resulting nonwoven sensors are characterized by good electrical conductivity and altered electrical resistance as a result of the presence of vapours

    Similar works