research

Identification of the multiscale fractional Brownian motion with biomechanical applications

Abstract

In certain applications, for instance biomechanics, turbulence, finance, or Internet traffic, it seems suitable to model the data by a generalization of a fractional Brownian motion for which the Hurst parameter HH is depending on the frequency as a piece-wise constant function. These processes are called multiscale fractional Brownian motions. In this contribution, we provide a statistical study of the multiscale fractional Brownian motions. We develop a method based on wavelet analysis. By using this method, we find initially the frequency changes, then we estimate the different parameters and afterwards we test the goodness-of-fit. Lastly, we give the numerical algorithm. Biomechanical data are then studied with these new tools

    Similar works