A review of some recent results on the dynamical theory of the Yang-Baxter
maps (also known as set-theoretical solutions to the quantum Yang-Baxter
equation) is given. The central question is the integrability of the transfer
dynamics. The relations with matrix factorisations, matrix KdV solitons,
Poisson Lie groups, geometric crystals and tropical combinatorics are discussed
and demonstrated on several concrete examples.Comment: 24 pages. Extended version of lectures given at the meeting
"Combinatorial Aspect of Integrable Systems" (RIMS, Kyoto, July 2004