Finding All Nash Equilibria of a Finite Game Using Polynomial Algebra


The set of Nash equilibria of a finite game is the set of nonnegative solutions to a system of polynomial equations. In this survey article we describe how to construct certain special games and explain how to find all the complex roots of the corresponding polynomial systems, including all the Nash equilibria. We then explain how to find all the complex roots of the polynomial systems for arbitrary generic games, by polyhedral homotopy continuation starting from the solutions to the specially constructed games. We describe the use of Groebner bases to solve these polynomial systems and to learn geometric information about how the solution set varies with the payoff functions. Finally, we review the use of the Gambit software package to find all Nash equilibria of a finite game.Comment: Invited contribution to Journal of Economic Theory; includes color figure

    Similar works

    Full text


    Available Versions