This note presents the study of the conjugacy classes of elements of some
given finite order n in the Cremona group of the plane. In particular, it is
shown that the number of conjugacy classes is infinite if n is even, n=3 or
n=5, and that it is equal to 3 (respectively 9) if n=9 (respectively 15), and
is exactly 1 for all remaining odd orders.
Some precise representative elements of the classes are given.Comment: 14 page