research

On stepdown control of the false discovery proportion

Abstract

Consider the problem of testing multiple null hypotheses. A classical approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWERFWER), the probability of even one false rejection. However, if ss is large, control of the FWERFWER is so stringent that the ability of a procedure which controls the FWERFWER to detect false null hypotheses is limited. Consequently, it is desirable to consider other measures of error control. We will consider methods based on control of the false discovery proportion (FDPFDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg (1995) controls E(FDP)E(FDP). Here, we construct methods such that, for any γ\gamma and α\alpha, P{FDP>γ}αP\{FDP>\gamma \}\le \alpha. Based on pp-values of individual tests, we consider stepdown procedures that control the FDPFDP, without imposing dependence assumptions on the joint distribution of the pp-values. A greatly improved version of a method given in Lehmann and Romano \citer10 is derived and generalized to provide a means by which any sequence of nondecreasing constants can be rescaled to ensure control of the FDPFDP. We also provide a stepdown procedure that controls the FDRFDR under a dependence assumption.Comment: Published at http://dx.doi.org/10.1214/074921706000000383 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019