research

Logarithmic intertwining operators and vertex operators

Abstract

This is the first in a series of papers where we study logarithmic intertwining operators for various vertex subalgebras of Heisenberg vertex operator algebras. In this paper we examine logarithmic intertwining operators associated with rank one Heisenberg vertex operator algebra M(1)aM(1)_a, of central charge 112a21-12a^2. We classify these operators in terms of {\em depth} and provide explicit constructions in all cases. Furthermore, for a=0a=0 we focus on the vertex operator subalgebra L(1,0) of M(1)0M(1)_0 and obtain logarithmic intertwining operators among indecomposable Virasoro algebra modules. In particular, we construct explicitly a family of {\em hidden} logarithmic intertwining operators, i.e., those that operate among two ordinary and one genuine logarithmic L(1,0)-module.Comment: 32 pages. To appear in CM

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019