Application of Visible to Near-Infrared Spectroscopy for Non-Destructive Assessment of Quality Parameters of Fruit

Abstract

The accuracy and robustness of prediction models are very important to the successful commercial application of visible to near-infrared spectroscopy (Vis-NIRS) on fruit. The difference in physiological characteristics of fruit is very wide, which necessitates variance in the type of spectrometers applied to collect spectral data, pre-processing of the collected data and chemometric techniques used to develop robust models. Relevant practices of data collection, processing and the development of models are a challenge because of the required knowledge of fruit physiology in addition to the Vis-NIRS expertise of a researcher. This chapter deals with the application of Vis-NIRS on fruit by discussing commonly used spectrometers, data chemometric treatment and common models developed for assessing quality of specific types of fruit. The chapter intends to create an overview of commonly used techniques for guiding general users of these techniques. Current status, gaps and future perspectives of the application of Vis-NIRS on fruit are also discussed for challenging researchers who are experts in this research field

    Similar works