Toward Better Understanding on How Group A <em>Streptococcus</em> Manipulates Human Fibrinolytic System

Abstract

Group A Streptococcus pyogenes (GAS) is a human pathogen that commonly causes superficial infections such as pharyngitis, but can also lead to systemic and fatal diseases. GAS infection remains to be a major threat in regions with insufficient medical infrastructures, leading to half a million deaths annually worldwide. The pathogenesis of GAS is mediated by a number of virulence factors, which function to facilitate bacterial colonization, immune evasion, and deep tissue invasion. In this review, we will discuss the mechanism of molecular interaction between the host protein and virulence factors that target the fibrinolytic system, including streptokinase (SK), plasminogen-binding group A streptococcal M-like protein (PAM), and streptococcal inhibitor of complement (SIC). We will discuss our current understanding, through structural studies, on how these proteins manipulate the fibrinolytic system during infection

    Similar works