Robust Outdoor Vehicle Visual Tracking Based on k-Sparse Stacked Denoising Auto-Encoder

Abstract

Robust visual tracking for outdoor vehicle is still a challenging problem due to large object appearance variations caused by illumination variation, occlusion, and fast motion. In this chapter, k-sparse constraint is added to the encoder part of stacked auto-encoder network to learn more invariant feature of object appearance, and a stacked k-sparse-auto-encoder–based robust outdoor vehicle tracking method under particle filter inference is further proposed to solve the problem of appearance variance during the tracking. Firstly, a stacked denoising auto-encoder is pre-trained to learn the generic feature representation. Then, a k-sparse constraint is added to the stacked denoising auto-encoder, and the encoder of k-sparse stacked denoising auto-encoder is connected with a classification layer to construct a classification neural network. Finally, confidence of each particle is computed by the classification neural network and is used for online tracking under particle filter framework. Comprehensive tracking experiments are conducted on a challenging single-object tracking benchmark. Experimental results show that our tracker outperforms most state-of-the-art trackers

    Similar works