Residual Limb Health and Prosthetics

Abstract

The residual limb of individuals with lower limb loss is dynamic tissue that is susceptible to both acute and chronic changes to limb volume and health over time. Changes in residual limb volume that affect socket fit may contribute to maladaptive gait patterns and deleterious changes to the socket/limb interface that increase harmful shear stress and contributes to residual limb skin injury. Current socket systems are static and lack the ability to provide end-users and prosthetists with patient-centric data about changes in socket fit over time. There is a need for objective clinical decision-making that results in greater prosthesis usage, improved residual limb health, and better comfort ratings for end-users. Among the socket systems available in the market, the elevated vacuum suspension system improves residual limb skin oxygenation, attenuates socket-induced reactive hyperemia and preserves skin barrier function. This suggests that such a system is compatible with imparting physiological benefits to the residual limb in people with lower limb amputations

    Similar works