Conjunctive Bayesian networks (CBNs) are graphical models that describe the
accumulation of events which are constrained in the order of their occurrence.
A CBN is given by a partial order on a (finite) set of events. CBNs generalize
the oncogenetic tree models of Desper et al. by allowing the occurrence of an
event to depend on more than one predecessor event. The present paper studies
the statistical and algebraic properties of CBNs. We determine the maximum
likelihood parameters and present a combinatorial solution to the model
selection problem. Our method performs well on two datasets where the events
are HIV mutations associated with drug resistance. Concluding with a study of
the algebraic properties of CBNs, we show that CBNs are toric varieties after a
coordinate transformation and that their ideals possess a quadratic Gr\"{o}bner
basis.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6133 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm