The middle levels problem is to find a Hamilton cycle in the middle levels,
M_{2k+1}, of the Hasse diagram of B_{2k+1} (the partially ordered set of
subsets of a 2k+1-element set ordered by inclusion). Previously, the best
result was that M_{2k+1} is Hamiltonian for all positive k through k=15. In
this note we announce that M_{33} and M_{35} have Hamilton cycles. The result
was achieved by an algorithmic improvement that made it possible to find a
Hamilton path in a reduced graph of complementary necklace pairs having
129,644,790 vertices, using a 64-bit personal computer.Comment: 11 pages, 5 figure