Role of Density Functional Theory in “Ribocomputing Devices”

Abstract

Molecular computing devices composed of biological substances, such as nucleic acid and ribonucleic acid plays a key role for the logical processing of a variety of inputs and viable outputs in the cellular machinery of all living organisms. These devices are directly dependent on the advancement in DNA and RNA technology. RNA nanoparticles can be engineered into a programmable and logically acting “Ribocomputing Devices”; a breakthrough at the interface of nanotechnology and synthetic biology. It opens a new path to the synthetic biologists to design reliable synthetic biological circuits which can be useful as the electronic circuits. In this emerging field, a number of challenges persist; as how to translate a variety of nucleic acid based logic gates developed by numerous research laboratories into the realm of silicon-based computing. So in this chapter we will discuss the advances in ribonucleic acid (RNA) based computing and it’s potential to serve as an alternative to revolutionize silicon-based technology by theoretical means. Also the results of the calculated parameters with computational tools using Density functional theory and the designed device circuits will be analyzed

    Similar works