We study asymptotic properties of the Green metric associated with transient
random walks on countable groups. We prove that the rate of escape of the
random walk computed in the Green metric equals its asymptotic entropy. The
proof relies on integral representations of both quantities with the extended
Martin kernel. In the case of finitely generated groups, where this result is
known (Benjamini and Peres [Probab. Theory Related Fields 98 (1994) 91--112]),
we give an alternative proof relying on a version of the so-called fundamental
inequality (relating the rate of escape, the entropy and the logarithmic volume
growth) extended to random walks with unbounded support.Comment: Published in at http://dx.doi.org/10.1214/07-AOP356 the Annals of
Probability (http://www.imstat.org/aop/) by the Institute of Mathematical
Statistics (http://www.imstat.org