Real Time Implementation of Fuzzy Adaptive PI-sliding Mode Controller for Induction Machine Control

Abstract

In this work, a fuzzy adaptive PI-sliding mode control is proposed for Induction Motor speed control. First, an adaptive PI-sliding mode controller with a proportional plus integral equivalent control action is investigated, in which a simple adaptive algorithm is utilized for generalized soft-switching parameters. The proposed control design uses a fuzzy inference system to overcome the drawbacks of the sliding mode control in terms of high control gains and chattering to form a fuzzy sliding mode controller. The proposed controller has implemented for a 1.5kW three-Phase IM are completely carried out using a dSPACE DS1104 digital signal processor based real-time data acquisition control system, and MATLAB/Simulink environment. Digital experimental results show that the proposed controller can not only attenuate the chattering extent of the adaptive PI-sliding mode controller but can provide high-performance dynamic characteristics with regard to plant external load disturbance and reference variations.

    Similar works