research

Natural and projectively equivariant quantizations by means of Cartan Connections

Abstract

The existence of a natural and projectively equivariant quantization in the sense of Lecomte [20] was proved recently by M. Bordemann [4], using the framework of Thomas-Whitehead connections. We give a new proof of existence using the notion of Cartan projective connections and we obtain an explicit formula in terms of these connections. Our method yields the existence of a projectively equivariant quantization if and only if an \sl(m+1,\R)-equivariant quantization exists in the flat situation in the sense of [18], thus solving one of the problems left open by M. Bordemann.Comment: 13 page

    Similar works

    Full text

    thumbnail-image