research

Kazhdan--Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models

Abstract

We derive and study a quantum group g(p,q) that is Kazhdan--Lusztig-dual to the W-algebra W(p,q) of the logarithmic (p,q) conformal field theory model. The algebra W(p,q) is generated by two currents W+(z)W^+(z) and W(z)W^-(z) of dimension (2p-1)(2q-1), and the energy--momentum tensor T(z). The two currents generate a vertex-operator ideal RR with the property that the quotient W(p,q)/R is the vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2 p q) of irreducible g(p,q)-representations is the same as the number of irreducible W(p,q)-representations on which RR acts nontrivially. We find the center of g(p,q) and show that the modular group representation on it is equivalent to the modular group representation on the W(p,q) characters and ``pseudocharacters.'' The factorization of the g(p,q) ribbon element leads to a factorization of the modular group representation on the center. We also find the g(p,q) Grothendieck ring, which is presumably the ``logarithmic'' fusion of the (p,q) model.Comment: 52pp., AMSLaTeX++. half a dozen minor inaccuracies (cross-refs etc) correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019