We derive and study a quantum group g(p,q) that is Kazhdan--Lusztig-dual to
the W-algebra W(p,q) of the logarithmic (p,q) conformal field theory model. The
algebra W(p,q) is generated by two currents W+(z) and W−(z) of dimension
(2p-1)(2q-1), and the energy--momentum tensor T(z). The two currents generate a
vertex-operator ideal R with the property that the quotient W(p,q)/R is the
vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2 p q)
of irreducible g(p,q)-representations is the same as the number of irreducible
W(p,q)-representations on which R acts nontrivially. We find the center of
g(p,q) and show that the modular group representation on it is equivalent to
the modular group representation on the W(p,q) characters and
``pseudocharacters.'' The factorization of the g(p,q) ribbon element leads to a
factorization of the modular group representation on the center. We also find
the g(p,q) Grothendieck ring, which is presumably the ``logarithmic'' fusion of
the (p,q) model.Comment: 52pp., AMSLaTeX++. half a dozen minor inaccuracies (cross-refs etc)
correcte