Pluripotent Stem Cell Derived Macrophages: Current Applications and Future Perspectives

Abstract

The ability to derive macrophages from human-induced pluripotent stem cells (iPSCs) provides an unlimited source of genotype-specific cells with the potential to play a role in advancing our understanding of macrophage biology in both homeostasis and disease. While sharing many of the functional characteristics of monocyte-derived macrophages, iPSC-derived macrophages have also been shown to have phenotypical and functional features associated with tissue resident macrophages. These features present new opportunities to develop models of human disease and to understand the role of developmental or tissue context in innate immune cell function. iPSCs-derived macrophages have also been identified as a highly attractive source for cell and gene therapy in the treatment of diverse degenerative diseases based on their anti-inflammatory activity, their ability to clear scarred cells by phagocytosis, and providing extracellular matrices. We review and present a concise discussion on macrophage differentiation from stem cells highlighting their advantages over classical monocyte-derived macrophages in modelling organ specific macrophages. We summarize the various disease models utilizing iPSCs-derived macrophages including hereditary syndromes and host-pathogen interactions in tissue repair and the strategies used to mimic pathological phenotypes. Finally, we describe the pre-clinical studies that have addressed the application of iPSCs-derived macrophages as a therapeutic intervention

    Similar works