Performance evaluation of interference aware topology power and flow control channel assignment algorithm

Abstract

Multi-Radio Multi-Channel Wireless Mesh Network (MRMC-WMN) has been considered as one of the key technology for the enhancement of network performance. It is used in a number of real-time applications such as disaster management system, transportation system and health care system. MRMC-WMN is a multi-hop network and allows simultaneous data transfer by using multiple radio interfaces. All the radio interfaces are typically assigned with different channels to reduce the effect of co-channel interference. In MRMC-WMN, when two nodes transmit at the same channel in the range of each other, generates co-channel interference and degrades the network throughput. Co-channel interference badly affects the capacity of each link that reduces the overall network performance. Thus, the important task of channel assignment algorithm is to reduce the co-channel interference and enhance the network performance. In this paper, the problem of channel assignment has been addressed for MRMC-WMN. We have proposed an Interference Aware, Topology, Power and Flow Control (ITPFC) Channel Assignment algorithm for MRMC-WMN. This algorithm assignes the suitable channels to nodes, which provides better link capacity and reduces the co-channel interference. In the previous work performance of the proposed algorithm has been evaluated for a network of 30 nodes. The aim of this paper is to further evaluate the performance of proposed channel assignment algorithm for 40 and 50 nodes network. The results obtained from these networks show the consistent performance in terms of throughput, delay, packet loss and number of channels used per node as compared to LACA, FCPRA and IATC Channel Assignment algorithms

    Similar works