Electrostatically-driven fast association and perdeuteration allow detection of transferred cross-relaxation for G protein-coupled receptor ligands with equilibrium dissociation constants in the high-to-low nanomolar range.

Abstract

International audienceThe mechanism of signal transduction mediated by G protein-coupled receptors is a subject of intense research in pharmacological and structural biology. Ligand association to the receptor constitutes a critical event in the activation process. Solution-state NMR can be amenable to high-resolution structure determination of agonist molecules in their receptor-bound state by detecting dipolar interactions in a transferred mode, even with equilibrium dissociation constants below the micromolar range. This is possible in the case of an inherent ultra-fast diffusive association of charged ligands onto a highly charged extracellular surface, and by slowing down the (1)H-(1)H cross-relaxation by perdeuterating the receptor. Here, we demonstrate this for two fatty acid molecules in interaction with the leukotriene BLT2 receptor, for which both ligands display a submicromolar affinity

    Similar works

    Full text

    thumbnail-image

    Available Versions