Extension de la régression linéaire généralisée sur composantes supervisées à la modélisation jointe des réponses

Abstract

National audienceDans ce travail, nous proposons d'étendre la méthode SCGLR, pour la rendre capable d'identifier des groupes de réponses expliquées par des composantes communes. À l'origine, SCGLR vise la construction de composantes explicatives dans un grand nombre de covariables, éventuellement fortement redondantes. Ces composantes sont supervisées conjointement par l'ensemble des réponses. Désormais, nous cherchons à identifier des groupes de réponses partageant les mêmes dimensions explicatives. Dans un cadre écologique par exemple, des communautés d'espèces devraient pouvoir être modélisées par des composantes propres à chaque communauté. Un algorithme est proposé afin d'estimer le modèle

    Similar works

    Full text

    thumbnail-image

    Available Versions