research

Connections on modules over quasi-homogeneous plane curves

Abstract

Let k be an algebraically closed field of characteristic 0, and let A=k[x,y]/(f)A = k[x,y]/(f) be a quasi-homogeneous plane curve. We show that for any graded torsion free A-module M, there exists a natural graded integrable connection, i.e. a graded A-linear homomorphism :Derk(A)Endk(M)\nabla: \operatorname{Der}_k(A) \to \operatorname{End}_k(M) that satisfy the derivation property and preserves the Lie product. In particular, a torsion free module N over the complete local ring B=A^B = \hat A admits a natural integrable connection if A is a simple curve singularity, or if A is irreducible and N is a gradable module.Comment: AMS-LaTeX, 12 pages, minor changes. To appear in Comm. Algebr

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019