research

Enumeration of 3-letter patterns in compositions

Abstract

Let A be any set of positive integers and n a positive integer. A composition of n with parts in A is an ordered collection of one or more elements in A whose sum is n. We derive generating functions for the number of compositions of n with m parts in A that have r occurrences of 3-letter patterns formed by two (adjacent) instances of levels, rises and drops. We also derive asymptotics for the number of compositions of n that avoid a given pattern. Finally, we obtain the generating function for the number of k-ary words of length m which contain a prescribed number of occurrences of a given pattern as a special case of our results.Comment: 20 pages, 1 figure; accepted for the Proceedings of the 2005 Integer Conferenc

    Similar works

    Full text

    thumbnail-image

    Available Versions