research

Geodesic Flow on the Normal Congruence of a Minimal Surface

Abstract

We study the geodesic flow on the normal line congruence of a minimal surface in R3{\Bbb{R}}^3 induced by the neutral K\"ahler metric on the space of oriented lines. The metric is lorentz with isolated degenerate points and the flow is shown to be completely integrable. In addition, we give a new holomorphic description of minimal surfaces in R3{\Bbb{R}}^3 and relate it to the classical Weierstrass representation.Comment: AMS-LATEX 8 pages 2, figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 20/07/2021