OsDCL1a activation impairs phytoalexin biosynthesis and compromises disease resistance in rice

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional regulators of gene expression via sequence-specific cleavage or translational repression of target transcripts. They are transcribed as long single-stranded RNA precursors with unique stem-loop structures that are processed by a DICER-Like (DCL) ribonuclease, typically DCL1, to produce mature miRNAs. Although a plethora of miRNAs have been found to be regulated by pathogen infection in plants, the biological function of most miRNAs remains largely unknown. Here, the contribution of OsDCL1 to rice immunity was investigated. OsDCL1a activation enhances susceptibility to infection by fungal pathogens in rice. Activation of OsDCL1a represses the pathogen-inducible host defence response and negatively regulates diterpenoid phytoalexin production. These findings provide a basis to understand the molecular mechanisms through which OsDCL1a mediates rice immunity

    Similar works

    Full text

    thumbnail-image

    Available Versions