research

Hypomorphy of graphs up to complementation

Abstract

Let VV be a set of cardinality vv (possibly infinite). Two graphs GG and GG' with vertex set VV are {\it isomorphic up to complementation} if GG' is isomorphic to GG or to the complement Gˉ\bar G of GG. Let kk be a non-negative integer, GG and GG' are {\it kk-hypomorphic up to complementation} if for every kk-element subset KK of VV, the induced subgraphs G_KG\_{\restriction K} and G_KG'\_{\restriction K} are isomorphic up to complementation. A graph GG is {\it kk-reconstructible up to complementation} if every graph GG' which is kk-hypomorphic to GG up to complementation is in fact isomorphic to GG up to complementation. We give a partial characterisation of the set S\mathcal S of pairs (n,k)(n,k) such that two graphs GG and GG' on the same set of nn vertices are equal up to complementation whenever they are kk-hypomorphic up to complementation. We prove in particular that S\mathcal S contains all pairs (n,k)(n,k) such that 4kn44\leq k\leq n-4. We also prove that 4 is the least integer kk such that every graph GG having a large number nn of vertices is kk-reconstructible up to complementation; this answers a question raised by P. Ill

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 11/11/2016