research

Singular-hyperbolic attractors are chaotic

Abstract

We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume) measure subset of the topological basin of attraction. Moreover this measure has absolutely continuous conditional measures along the center-unstable direction, is a uu-Gibbs state and an equilibrium state for the logarithm of the Jacobian of the time one map of the flow along the strong-unstable direction. This extends to the class of singular-hyperbolic attractors the main elements of the ergodic theory of uniformly hyperbolic (or Axiom A) attractors for flows.Comment: 55 pages, extra figures (now a total of 16), major rearrangement of sections and corrected proofs, improved introductio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020