research

Th\'eorie d'Iwasawa des repr\'esentations cristallines II

Abstract

Let KK be a finite unramified extension of \Qp and let VV be a crystalline representation of \mathrm{Gal}(\Qpbar/K). In this article, we give a proof of the CEP(L,V)C_{\mathrm{EP}}(L,V) conjecture for L \subset \Qp^{\mathrm{ab}} as well as a proof of its equivariant version CEP(L/K,V)C_{\mathrm{EP}}(L/K,V) for Ln=1K(ζpn)L \subset \cup_{n=1}^\infty K(\zeta_{p^n}). The main ingredients are the \delta_{\Zp}(V) conjecture about the integrality of Perrin-Riou's exponential, which we prove using the theory of (ϕ,Γ)(\phi,\Gamma)-modules, and Iwasawa-theoretic descent techniques used to show that \delta_{\Zp}(V) implies CEP(L/K,V)C_{\mathrm{EP}}(L/K,V).Comment: 58 page

    Similar works

    Full text

    thumbnail-image

    Available Versions