Design and Development of a Digital Controlled Dielectric Barrier Discharge (DBD) AC Power Supply for Ozone Generation

Abstract

1057-1068A digital controlled dielectric barrier discharge (DBD) AC (Alternative current) power supply is designed and investigated. The power source design with a diode bridge rectifier and PWM (Pulse Width Modulation) inverter along with driver circuits are presented. A step-up transformer is designed to carry 4.6 kW and 10 kVp-p for a dielectric barrier discharge (DBD) AC power supply and ozone generation. An STM (STMicroelectronics) microcontroller is employed to control the phase shift angle of the PWM inverter. The operating frequency of the PWM inverter is 25 kHz. Zero voltage detection can be reached and achieves maximum efficiency. Also, a high voltage transformer is included. The practical results shown that the DBD power supply can be controlled at the chosen value and extreme efficiency can be 87.45 % at 4.6 kW/10 kVp-p

    Similar works