Three-dimensional quantitative coronary angiography and the registration with intravascular ultrasound and optical coherence tomography

Abstract

This thesis proposes several new algorithms including X-ray angiographic image enhancement, three-dimensional (3D) angiographic reconstruction, angiographic overlap prediction, and the co-registration of X-ray angiography with intracoronary imaging devices, such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The algorithms were integrated into prototype software packages that were validated at a number of clinical centers. The feasibility of using such software packages in typical clinical population was verified, while the advantages and accuracy of the proposed algorithms were demonstrated by phantoms and in-vivo clinical studies. In addition, based on the proposed approaches and the conducted studies, this thesis reports a number of findings including the impact of acquisition angle difference on 3D quantitative coronary angiography (QCA), the clinical characteristics of bifurcation optimal viewing angles and bifurcation angles, and the discrepancy of lumen dimensions as assessed by 3D QCA and by IVUS or OCT.UBL - phd migration 201

    Similar works