Quantum Dimensionality Reduction by Linear Discriminant Analysis

Abstract

Dimensionality reduction (DR) of data is a crucial issue for many machine learning tasks, such as pattern recognition and data classification. In this paper, we present a quantum algorithm and a quantum circuit to efficiently perform linear discriminant analysis (LDA) for dimensionality reduction. Firstly, the presented algorithm improves the existing quantum LDA algorithm to avoid the error caused by the irreversibility of the between-class scatter matrix SBS_B in the original algorithm. Secondly, a quantum algorithm and quantum circuits are proposed to obtain the target state corresponding to the low-dimensional data. Compared with the best-known classical algorithm, the quantum linear discriminant analysis dimensionality reduction (QLDADR) algorithm has exponential acceleration on the number MM of vectors and a quadratic speedup on the dimensionality DD of the original data space, when the original dataset is projected onto a polylogarithmic low-dimensional space. Moreover, the target state obtained by our algorithm can be used as a submodule of other quantum machine learning tasks. It has practical application value of make that free from the disaster of dimensionality

    Similar works

    Full text

    thumbnail-image

    Available Versions