Applications of topology to Weyl semimetals and quantum computing

Abstract

This thesis covers various applications of topology in condensed matter physics and quantum information. It studies how the topology of the electronic structure of a Weyl semimetal affects the transport behaviour of electrons in an applied magnetic field, and how one may employ similar ideas in materials containing Majorana modes to speed up chemistry calculations on a quantum computer. It develops and tests new techniques for decoding topological quantum error correcting codes, in particular for detailed simulation on near-term devices. Finally, it looks towards improving quantum algorithms for future applications in quantum simulation; in particular the classical post-processing of data taken during quantum phase estimation experiments.European Research Council; Netherlands Organization for Scientific ResearchQuantum Matter and Optic

    Similar works