This in vitro study aimed to evaluate the effect of a silane-containing universal adhesive used with or without a silane agent on the repair bond strength between aged and new composites. Forty nanohybrid composite resin blocks were stored in distilled water for 14 d and thermo-cycled. Sandpaper ground, etched, and rinsed speciments were randomly assigned into four experimental groups: silane + two-step etch-and-rinse adhesive system, two-step etch-and-rinse adhesive system, silane + silane-containing universal adhesive system, and silane-containing universal adhesive system. Blocks were repaired using the same composite. After 24 h of water storage, the blocks were sectioned and bonded sticks were submitted to microtensile testing. Ten unaged, non-repaired composite blocks were used as a reference group to evaluate the cohesive strength of the composite. Two-way ANOVA and Tukey’s tests were used to analyze average µTBS. One-way ANOVA and Dunnet post-hoc tests were used to compare the cohesive strength values and bond strength obtained in the repaired groups (α = 0.05). The µTBS values were higher for the silane-containing universal adhesive compared to the two-step etch-and-rinse adhesive system (p = 0.002). Silane application improved the repair bond strength (p = 0.03). The repair bond strength ranged from 39.3 to 65.8% of the cohesive strength of the reference group. Using universal silane-containing adhesive improved the repair bond strength of composite resin compared to two-step etch-and-rinse adhesive. However, it still required prior application of a silane agent for best direct composite resin repair outcomes