research

Confidence sets for nonparametric wavelet regression

Abstract

We construct nonparametric confidence sets for regression functions using wavelets that are uniform over Besov balls. We consider both thresholding and modulation estimators for the wavelet coefficients. The confidence set is obtained by showing that a pivot process, constructed from the loss function, converges uniformly to a mean zero Gaussian process. Inverting this pivot yields a confidence set for the wavelet coefficients, and from this we obtain confidence sets on functionals of the regression curve.Comment: Published at http://dx.doi.org/10.1214/009053605000000011 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019