research

An efficient algorithm for discovering frequent subgraphs

Abstract

Abstract β€” Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to non-traditional domains, existing frequent pattern discovery approach cannot be used. This is because the transaction framework that is assumed by these algorithms cannot be used to effectively model the datasets in these domains. An alternate way of modeling the objects in these datasets is to represent them using graphs. Within that model, one way of formulating the frequent pattern discovery problem is as that of discovering subgraphs that occur frequently over the entire set of graphs. In this paper we present a computationally efficient algorithm, called FSG, for finding all frequent subgraphs in large graph datasets. We experimentally evaluate the performance of FSG using a variety of real and synthetic datasets. Our results show that despite the underlying complexity associated with frequent subgraph discovery, FSG is effective in finding all frequently occurring subgraphs in datasets containing over 200,000 graph transactions and scales linearly with respect to the size of the dataset. Index Terms β€” Data mining, scientific datasets, frequent pattern discovery, chemical compound datasets

    Similar works